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Abstract 

Background: High-content imaging (HCI) allows simultaneous measurement of multiple 

cellular phenotypic changes and is an important tool for evaluating the biological activity of 

chemicals. 

Objectives: Our goal was to analyze dynamic cellular changes using HCI to identify the “tipping 

point” at which the cells did not show recovery towards a normal phenotypic state.  

Methods: The effects of 967 chemicals were evaluated using HCI in HepG2 cells over a 72 h 

exposure period to concentrations ranging from 0.4 to 200 µM. The HCI endpoints included p53, 

c-Jun, phospho-Histone H2A.x, alpha tubulin, phospho-Histone H3, alpha tubulin, mitochondrial 

membrane potential, mitochondrial mass, cell cycle arrest, nuclear size and cell number. A 

computational model was developed to interpret HCI responses as cell-state trajectories.  

Results: Analysis of cell-state trajectories showed 336 chemicals produced tipping points, 

whereas HepG2 cells were resilient to the effects of 334 chemicals up to the highest 

concentration (200 µM) and duration (72 h) tested. Tipping points were identified as 

concentration-dependent transitions in system recovery and the corresponding critical 

concentrations were generally between 5 and 15 times (25th and 75th percentiles, respectively) 

lower than the concentration that produced any significant effect on HepG2 cells. The remaining 

297 chemicals require more data before they can be placed in either of the former categories.   

Conclusions: These findings show the utility of HCI data for reconstructing cell state 

trajectories, and provide insight into adaptation and resilience of in vitro cellular systems based 

on tipping points. Cellular tipping points could be used to define a point of departure for risk-

based prioritization of environmental chemicals.  
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Introduction 

A major focus in public health has been to understand and limit potential adverse health effects 

of chemicals. However, despite an expectation of safety from the general public, tens of 

thousands of chemicals in commerce have been evaluated on the basis of closely related analogs, 

but lack chemical-specific toxicity information (Judson et al. 2009). The lack of toxicity 

information has led to national and international efforts to use in vitro high-throughput screening 

(HTS) methods to collect data on biochemical and cellular responses following chemical 

treatment in vitro (Kavlock et al. 2009; Attene-Ramos et al. 2013). A key element of toxicity 

testing in the 21st century (NRC 2007; Boekelheide and Andersen 2010) is to conceptually 

organize HTS data into pathways that when sufficiently perturbed, lead to adverse outcomes. 

One challenge associated with the new vision has been to assess ‘tipping points’ beyond which 

pathway perturbations invoke a lasting change that could ultimately lead to an adverse effect.  

The present study is part of the EPA’s ToxCast™ project, which aims to develop in vitro screens 

to identify potentially hazardous substances for further targeted testing (Kavlock et al. 2012). We 

used high-content imaging (HCI) (Giuliano et al. 2006), which applies automated image analysis 

techniques to capture multiple cytological features using fluorescent labels, and to measure the 

concentration-dependent dynamic changes in the state of HepG2 cells. Although not fully 

metabolically capable, HepG2 cells can undergo continuous proliferation in culture and have a 

demonstrated capacity to predict hepatotoxicity of pharmaceutical compounds with good 

sensitivity and specificity (O’Brien et al. 2006; Abraham et al. 2008). Using computational tools 

HCI responses were deconvoluted into cell state trajectories and analyzed by their propensity to 

recover to normal (basal) conditions over the test period. The critical concentration associated 
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with non-recoverable cellular trajectories were determined, where possible, and compiled into a 

novel chemical classification scheme. We discuss how these ‘tipping points’ in cellular systems 

function might be used to define a point of departure for risk-based prioritization of 

environmental chemicals. 

Methods 

Cell culture 

HepG2 cells were obtained from ATCC and used before passage 20. Cells were maintained and 

expanded in complete media (10% FBS in MEM/EBSS supplemented with 

Penicillin/Streptomycin, L-glutamine and non-essential amino acids). Cell culture reagents were 

obtained from VWR International. HepG2 cells were harvested by trypsinization and plated at 

different densities in 25 µl of culture medium, depending on incubation time, in clear-bottom, 

384-well microplates (Falcon #3962) that were coated with rat tail collagen I. The cells were 

incubated overnight to allow for attachment and spreading.  

Chemical treatments 

HepG2 cells were treated with 967 chemicals from ToxCast Phase-I and Phase-II libraries (EPA 

2014). Cells were treated with DMSO as a solvent control at a final concentration of 0.5% (v/v) 

or with compounds in DMSO with a resulting final DMSO concentration of 0.5% (v/v). 

Compound treatment was done at 0.39, 0.78, 1.56, 3.12, 6.24, 12.5, 25, 50, 100 and 200 µM in 

duplicate on each plate.  Cells were treated with ToxCast Phase I compounds for 1, 24, and 72 h 

and ToxCast Phase II compounds for 24 and 72 h only. Carbonylcyanide m-

chlorophenylhydrazone (CCCP) and taxol were used as positive controls for mitochondrial 
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function and cytoskeletal stability, respectively; DMSO served as the negative control for this 

experiment.  

Cell Staining and Fluorochroming 

Cells were fixed by the direct addition of 50 µl formaldehyde in HBSS to a final concentration of 

3.7%. After incubation in the fixation medium for 30 min at room temperature, cells were rinsed 

twice with HBSS and treated with cell permeabilization buffer (16 µL of 0.5% Triton X-100) for 

10 min at room temperature before labeling. For mitochondrial membrane potential and 

mitochondrial measurements, pre-fixed cells were incubated with 50 uL of MitoTracker® Red 

CMXRos (Invitrogen) at 250 nM for 30 min before fixation. In the remaining cases, post-fixed 

cells were labeled by incubation with a multiplexed mixture of primary antibodies in HBSS for 

60 min at room temperature to detect immunoreactivity of: c-Jun (1:500), phospho-Histone H3 

(1:100), phospho-Histone H2A.x (1:200), TP53 (1:400), α-tubulin (1:200) and Hoechst 33342 (2 

µg/ml). Cells were labeled for multiplexed imaging on two separate plates: (i) Hoechst 33342, 

MitoTracker Red, phospho-Histone H3, α-tubulin, and (ii) Hoechst 33342, phospho-Histone 

H2A.x, c-Jun.  A final rinse with HBSS (50 µl) was performed prior to analysis.  The primary 

and secondary antibodies for proteins were: phospho-Histone H3 (Rabbit anti-phospho-histone 

H3 and FITC-Donkey anti-rabbit IgG), phospho-Histone H2A.x (Mouse anti-phospho-histone 

H2A.X and FITC-Donkey anti-mouse IgG), c-Jun (Rabbit anti-phospho-c-jun and Cy3-Donkey 

anti-rabbit IgG), TP53 (Sheep anti-p53 and Cy5-Donkey anti-sheep IgG), α-tubulin (Mouse anti-

a-tubulin and Cy5-Donkey anti-mouse IgG).  These antibodies are available as the CellCiphr 

HepG2 assay kit from Millipore.  
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Image acquisition, analysis and feature extraction 

Digital images of each well were captured using a Cellomics ArrayScan VTI (Thermo Scientific 

Cellomics®) (0.8 NA objective, 0.63x optical coupler, and XF-93 filter set) at 20x 

magnification. The images were acquired using the autofocus feature of the ArrayScan 

instrument, which entails the following steps. First, the camera focuses on channel 1 (Hoechst 

33342) where nuclei are identified. Second, a Z offset of 1 µm is used for capturing mitochondria 

(MitoTracker Red). Third, a Z offset of -2 µm is used for capturing the cytoskeleton (tubulin). 

Six digital images were captured in each well and analyzed using BioApplication software 

provided with the instrument. All images were analyzed using the Compartmental Analysis and 

Cell Cycle Analysis BioApplication software from Cellomics. The Cell Cycle BioApplication 

software (Cellomics 2007a) used the nuclear stain to identify valid cells, to measure nuclear 

diameter, and to quantify DNA content. These features were used to calculate the average 

nuclear size, cell cycle arrest (ratio of 2N/4N) and cell number. The Compartmental Analysis 

BioApplication software (Cellomics 2007b) was used to measure the average cell level 

intensities for c-Jun phosphorylation, p53 protein activation, phospho-Histone H2A.x activation, 

mitochondria, and alpha-tubulin. The average intensity of mitochondria was used to define 

mitochondrial membrane potential while the total intensity was used to define mitochondrial 

mass. Data from cellular features measured in the nucleus were excluded in wells where there 

was significant decrease in nuclear size and brightness. Detailed documentation about the 

algorithms and parameter used by the BioApplication software for this analysis are available 

upon request. Cellular features were aggregated at the well level to quantify the following 

endpoints: p53 activation, c-Jun activation (stress kinase), phospho-Histone H2A.x (DNA 



Environ Health Perspect DOI: 10.1289/ehp.1409029 
Advance Publication: Not Copyedited 

7 

damage produced by oxidative stress), phospho-Histone H3 (mitotic arrest), alpha tubulin 

(microtubules), mitochondrial membrane potential, mitochondrial mass, cell cycle arrest, nuclear 

size and cell number. Supplemental Material, Table S1 summarizes the relationship between 

cellular endpoints, stains/fluorochromes, BioApplication software, and the specific algorithms 

used for extracting cell level features. The raw image data (captured by the ArrayScan VTI) and 

well level data for all chemical treatment concentrations, time points, and stains/fluorochromes 

was stored in a custom database, which is freely available (ftp://www.epa.gov/comptox/toxcast-

hci-hepg2-a). Representative HCI images captured 1, 24 and 72 h after treatment with CCCP, 

taxol, butachlor, fludioxonil and fluazinam are shown in Supplemental Material, Figures S1(a), 

(b), (c), (d) and (e), respectively. 

Data processing and normalization 

Concentration response data from the HCI experiment were smoothed and normalized for every 

chemical, endpoint and time. The raw concentration responses were smoothed using a Hamming 

window (Blackman and Tukey 1958) of length 7. The raw concentration-dependent responses 

for reference chemicals, CCCP and taxol, are shown in Supplemental Material, Figures S2(a) and 

S2(b), respectively. The raw time-dependent responses for reference chemicals, CCCP and taxol, 

are shown in Supplemental Material, Figures S2(c) and S2(d), respectively. Further examples of 

raw smoothed concentration and time dependent responses for fludioxonil, fluazinam, and 

butachlor are shown in Supplemental Material, Figure S3. Next, the smoothed data (r) for 

endpoints measured on each plate were normalized by the median response (r*) to calculate 

perturbations as the logarithm (base 2) of fold change values. The normalized changes  
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(x=log2 r/r*) were also standardized (z = (x – x*)/σx) to evaluate the importance of perturbations 

(where σx is the standard deviation of x). The lowest effect concentration (LEC) for each 

chemical and endpoint was calculated as the concentration that produced a fold change 

perturbation at least one standard deviation (i.e., σx = 1) above or below the median value. An 

absolute perturbation greater than one standard deviation was called a “hit” (i.e., |σx| > 1). The 

LEC was estimated by numerically solving for: |z| = 1 (the minimum value was selected if there 

were multiple solutions). The efficacy was measured as maximum positive or negative value of x. 

System trajectory and dynamics 

Each concentration and duration of chemical treatment produced a system perturbation (X), 

which was represented by the vector: X = [xsk, xos, xp53, xmt, xmm, xmmp, xma, xcca, xns, xcn] (where the 

subscripts sk, os, mt, p53, mm, mmp, ns, ma, cca, and cn denote stress kinase, oxidative stress, 

p53, microtubules, mitochondrial mass, mitochondrial membrane potential, mitotic arrest, cell 

cycle arrest, nuclear size and cell number, respectively). The vector perturbation was also 

summarized by a scalar magnitude (X), which was calculated as the Euclidean norm (X =|X| = 

(∑xi
2)1/2 ). We defined a trajectory (T) as the dynamic response of the system to a chemical 

concentration as a temporal sequence of scalar perturbations, T = {X0, X1, X2, .., Xt,.., Xn}. The 

scalar system perturbation was assumed continuous across concentration and time (X= f(c,t)) and 

estimated from experimental data (we assumed that the system was unperturbed at t=0, i.e. f(c,0) 

=0). The velocity of the system (V) was defined as the rate of change of the scalar system 

perturbation (V = ∂X/∂t) and calculated as the slope of X with respect to time, t. At a given time 

point, normal, recovering, and non-recovering trajectories are defined by: V = 0, V<0 and V>0, 
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respectively. The concepts of system trajectory, velocity, and recovery are illustrated in Figures 

1(a), (b) and (c), respectively. 

Quantifying system recovery across concentrations 

We assumed V formed a two-dimensional surface from which the recovery of the system could 

be analyzed at any time (t) across concentrations (c) (see Figure 1(d)). Consider a hypothetical 

parabolic relationship between V and c at a fixed time (shown in Figure 1(e)). At low 

concentrations V is positive, which suggests that the system perturbation is increasing. As the 

concentration increases, V decreases until it reaches a turning point, and then it begins to 

increase. These trends can be summarized by rate of change of V with respect to concentration 

(∂cV = ∂V/∂c = ∂2X/∂t∂c), which can have three possible values: (a) ∂cV<0 for concentrations that 

produce recovery, (b) ∂cV>0 for concentrations that do not produce recovery, and (c) ∂cV=0 

signifies the concentration corresponding to the critical point for system recovery. For each 

chemical, the empirical relationship between ∂cV and different treatment concentrations at 72 h 

was estimated by B-spline interpolation and numerically solved for ∂cV=0 to calculate the 

critical concentration (denoted as, Ccr). After resampling 50 subsets of the concentration-velocity 

pairs for each chemical, ∂cV was fitted and solved for ∂cV=0 to construct a distribution, which 

was used to estimate the 95% confidence interval for Ccr. We also recorded the trends in ∂cV as a 

function of concentration and the frequency with which the resampled subsets produced critical 

points (i.e. parabolic trends in ∂cV with maxima), or produced recovery (i.e. parabolic trends in 

∂cV with minima).  
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Data analysis software 

The data processing, storage, analysis and visualization was conducted using the freely available 

Python programming language (Python 2014) and associated open source libraries. The software 

is freely available from authors upon request. 

Results 

General Characteristics of Cellular Effects 

The concentration-response profiles of 967 chemicals were analyzed across the 10 HCI 

endpoints and three time points to identify hits.  Almost half of the chemicals (43.7% or 

432/967) produced a hit for at least one of the 10 endpoints by 72 h. Chemical-wise, 13.7% 

(132/967) changed mitochondrial membrane potential, 15.2% (147/967) altered mitochondrial 

mass, 22.7% (220/967) invoked oxidative stress, 9.4% (91/967) altered microtubules, 14.1% 

(137/967) perturbed stress kinase, 27.1% (262/967) altered p53 protein distribution, 17.3% 

(167/967) produced cell cycle arrest, 26.9% (260/967) invoked mitotic arrest, 7.7% (74/967) 

changed nuclear size and 32.2% (311/967) decreased cell number. Time-wise, altered 

mitochondrial membrane potential (29/308) and p53 activity (14/308) were the two most 

frequent perturbations at 1 h (only Phase-I compounds (EPA 2014) were tested at 1 h); 

perturbations in p53 activity (168/967), mitotic arrest (157/967), and cell loss (155/967) were the 

most frequent effects at 24 h. Finally, decrease in cell number (303/967), mitotic arrest (249/967) 

and p53 activity (228/967) were the most frequent effects at 72 h. The LEC for all 967 chemicals 

across the 10 endpoints are provided as Supplemental Material, Excel Table S1.  
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Cellular perturbations  

Interpreting the results of the HCI experiment proved to be a complex problem because nearly 

half of the chemicals produced hits across multiple endpoints at different times. The dynamic 

perturbations produced by a representative subset of chemicals are shown in Figure 2 (data for 

all chemicals is provided as Supplemental Material, Excel Table S2). Each row of heatmaps 

displays the perturbations produced by increasing concentrations (only 0.39, 1.56, 6.25, 25, and 

100 µM treatments are shown) of six chemicals:  (a) octanoic acid, (b) dimethyl terephthalate, 

(c) chlorpyrifos-methyl, (d) butachlor, (e) dicofol, and (f) oxadiazon.  Each heatmap shows 

perturbations (colors), times (rows) and endpoints (columns). For example, the row of heatmaps 

in Figure 2(a) shows the perturbations produced by octanoic acid, which is widely used in 

perfumes and disinfectants. Treating HepG2 cells with 0.39 µM octanoic acid increased p53 

nuclear localization (3-fold) and stress kinase activity (2-fold) at 24 h. By 72 h p53 activity 

recovered close to baseline levels, but stress kinase activity was still elevated (1.4-fold). At a 

higher treatment concentration, 1.56 µM, octanoic acid decreased mitochondrial membrane 

potential (0.2-fold) at 24h but mitochondrial membrane potential recovered to background levels 

by 72 h. Since octanoic acid is a medium chain fatty acid, we speculate its effects on oxidative 

stress and mitochondrial function may be due to an increase in fatty acid metabolism (Gyamfi et 

al. 2012). 

The next row of heatmaps in Figure 2(b) show the dynamic effects of dimethyl terephthalate 

(DMT), which is used in the production of polyesters. DMT produced a time-dependent increase 

(1.5-fold at 24 h and 2.5-fold at 72 h) in mitochondrial membrane potential and a minor decrease 

(0.7-fold at 24h and 0.7-fold and 72 h) in nuclear size at 0.39 µM. At 100 µM treatment 
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concentration, DMT caused a decrease in mitochondrial membrane potential (0.9-fold at 24 h 

and 0.3-fold at 72 h). The dual effects of DMT on MMP, increased at 0.39 µM but decreased at 

100 µM, could be explained by transient mitochondrial hyperpolarization preceding apoptosis 

(Sánchez-Alcázar et al. 2000). The proportion of cells undergoing apoptosis was small, however, 

as there was no substantial decrease in cell number. As such, DMT exposure alters mitochondrial 

membrane potential with hyperpolarization at low concentrations and concentration-dependent 

transition to depolarization at a higher concentrations. The complex mechanisms underlying such 

a dose-dependent transition were difficult to interpret using these HCI data alone.  

The organophosphate insecticide, chlorpyrifos-methyl (Figure 2(c)), caused microtubule 

disruption (0.2-fold change) at 1 h after 0.39 µM treatments, and a decrease (0.7-fold) in cell 

number after 72 h for a 200 µM (data not shown).  Low concentrations of chlorpyrifos, which is 

structurally related to chlorpyrifos-methyl, in the 1-10 µM range, are known to disrupt the 

cytoskeleton in neurons (Flaskos et al. 2011).  Chlorpyrifos is a known acetlycholinesterase 

inhibitor but the relevance to cytoskeletal disruption is unclear. Unlike octanoic acid, DMT and 

chlorpyrifos-methyl, butachlor (Figure 2(d)) produced concentration- and time-dependent 

perturbations across multiple endpoints. For a treatment concentration of 0.39 µM, butachlor 

increased p53 activity at 1 h (1.5-fold) and 24 h (2.5-fold), but p53 activity recovered to 

background levels by 72 h. This temporal trend of early p53 activation followed by later 

recovery was observed for increasing butachlor concentrations up to 6.25 µM. This recovery was 

not evident for butachlor concentrations above 6.25 µM; hence, the p53 response was more 

persistent at higher concentrations. The temporal trends in mitochondrial mass tracked along 

with p53 activity for this compound. Butachlor decreased cell number beyond 24 h at 
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concentrations above 100 µM. This widely used herbicide has been shown to induce DNA-

damage and mitochondrial dysfunction in peripheral blood mononuclear (PBMN) cells (Dwivedi 

et al. 2012).  

Dicofol, an organochlorine pesticide, invoked concentration-dependent early (1 and 24 h) 

perturbations in mitochondrial membrane potential, p53 activity, and stress kinase.  At later 

time points (24 and 72 h), perturbations were observed in mitochondrial mass, cell cycle arrest, 

nuclear size and cell number (Figure 2(e)). Oxadiazon (bensulide), another organophosphate 

herbicide, also produced complex time- and concentration-dependent changes across all 

endpoints (Figure 2(f)).  

Cell state trajectories 

We used the concept of a system trajectory to analyze the concentration- and time-dependent 

stress responses produced by each chemical. A trajectory describes the dynamic changes in the 

state of HepG2 cells in response to chemical exposure. To interpret the HCI data in terms of cell 

state trajectories, we first assumed that the state of the HepG2 system could be defined by 

oxidative stress, stress kinase activity, mitochondrial function, cytoskeletal stability, cell cycle 

progression and cell number (which were all measured by HCI). Next, we assumed that the HCI 

data at each time point captures a snapshot of the state of the HepG2 system as it follows a 

chemical-induced trajectory. The heatmaps in Figure 2(a), for example, visualize trajectories for 

different treatment concentrations of octanoic acid. The rows of each heatmap (from bottom to 

top) correspond to discrete snapshots of the system perturbation at successive time points (0, 1, 

24 and 72 h), and the columns of each heatmap show the system state based on 10 HCI 
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endpoints. We assume that the system is initially in a ‘ground state’ that defines the normal 

pattern so, by this definition there are no perturbations at 0 h.  

Comparing the trajectories produced by different chemicals in Figure 2 revealed qualitative 

differences across concentrations and time points. For example, the trajectories produced by 0.39 

µM and 1.56 µM octanoic acid show transitory perturbations in p53 and stress kinase activities at 

low concentrations, but not at high concentrations (Figure 2a). In contrast, butachlor produced 

quite clearly different trajectories in temporal response profiles at concentrations below 6.25 µM 

versus above 6.25 µM (Figure 2d). To enable quantitative analysis of trajectories both chemical-

wise and concentration-wise, we developed an aggregate measure of overall system perturbation. 

The resulting perturbation vector (denoted as, X
!

) describes the changes in each endpoint at a 

given time, and the scalar magnitude of X
!

 (denoted as, X) measures the overall perturbation of 

the system by combining the contribution of individual endpoints. When the system is at the 

ground state, then scalar perturbation is essentially zero (X = 0), but as the cellular endpoints 

change due to chemical treatment the scalar perturbation increases (X>0).  

Trajectories and system recovery 

The scalar perturbations for the trajectories were calculated for the 967 chemicals and 10 

treatment concentrations to investigate concentration- and time-dependent trends. The trends for 

16 representative chemicals including, captan, dicofol, butachlor, dimethyl terephthalate, sodium 

L-ascorbate, octanoic acid, chlorpyrifos-methyl, oxadiazon, pioglitazone, farglitazaar, 

troglitazone, thiram, fludioxonil, mercuric chloride, fluazinam and tetramethrin are visualized in 

Figure 3. The ordinate and abscissa of each graph in Figure 3 shows the scalar perturbation (X) 
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and treatment duration (hours), respectively, for each of the 16 chemicals. The treatment 

concentrations for each chemical are visualized as colors from low (blue) to high (red). For 

example, trajectories elicited by butachlor treatments showed two different temporal trends in X. 

First, treatments less than 25 µM produced an early (1 and 24 h) increase in X that was followed 

by a later decrease (72 h). Second, trajectories elicited by butachlor treatments 25 µM and greater 

showed only an increase in X with time. We interpret these temporal trends as the integrated 

effect of chemical-induced stress, which causes X to deviate from the ground state, and adaptive 

cellular processes, which enable the system to recover to the ground state (Supplemental 

Material, Figure S1(c)).  Thus, butachlor treatments less than 25 µM induced stress that 

dissipated with time because adaptive processes were activated in HepG2 cells that enabled 

system recovery. On the other hand, butachlor treatments 25 µM and above showed a monotonic 

increase with time, suggesting these higher concentrations overwhelmed the adaptive processes 

in HepG2 cells and consequently, the system could not recover to its ground state.  

An adaptive recovery trend was also observed for octanoic acid, captan and dicofol (the results 

for other chemicals are not shown for brevity but are available as Supplemental Material, Excel 

Table S3). The dynamic capacity of HepG2 cells to recover varied by chemical and by 

concentration as illustrated by the cellular response to butachlor. Octanoic acid, on the other 

hand, produced smaller perturbations than butachlor and all trajectories implied system recovery. 

Of the 16 representative chemicals shown in Figure 3, partial or complete recovery trajectories 

were evident for some compounds. The two thiazoladinediones (pioglitazone and troglitazone) 

also displayed similar trends but it was difficult to compare differences quantitatively.  
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System tipping points 

Visual inspection was useful for comparing the trends produced by different chemicals but not 

for quantifying concentration-dependent differences in perturbation and recovery. To further 

analyze the trends for each chemical, the rate of change of the scalar perturbation was calculated 

for the trajectories. The rate of change of the scalar perturbation across time (denoted as V = 

∂X/∂t) measures the “velocity” of the system perturbation at any given point in the trajectory 

(described further in Methods). The velocity is negative (V<0) when the system is on a trajectory 

that is recovering to the ground state. If the velocity is positive (V>0), then the system is on a 

trajectory that is not recovering. The system velocity for the trajectories was thus calculated 

using data for X at 24 and 72 h produced by all 967 chemicals and 10 treatment concentrations 

(results not shown). Trends in system velocity summarize the behavior of system trajectories and 

reveal concentration-dependent transitions that define the ‘tipping points’ for recovery of the 

HepG2 cellular system. We hypothesized the broader existence of such tipping points after 

studying the trajectories of chemicals such as, captan, dicofol and butachlor. 

To mathematically identify tipping points of the HepG2 system using trajectories, the 

relationship between perturbation velocity (V) and concentration (c) was analyzed. We used the 

rate of change of V with respect to concentration (denoted as, ∂cV) to identify the concentration 

threshold for system recovery (see Methods). Like velocity, ∂cV can have three possible values: 

(1) ∂cV<0 for concentrations that produce recovery, (2) ∂cV>0 for concentrations that do not 

produce recovery, and (3) ∂cV=0 signifies the critical concentration and (denoted as, Ccr) 

corresponding to the tipping point of the system. The ∂cV and Ccr for 967 chemicals were 

calculated using the data at 24 and 72 h. We also conducted an uncertainty analysis for each 
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chemical to evaluate confidence in trajectories and to estimate variability in Ccr due to 

experimental noise (additional details are provided in Methods).  

The scalar perturbation (X), velocity (V), derivative of velocity with respect to concentration 

(∂cV) for select chemicals at 72 h are shown in Figure 4. Two main concentration-dependent 

trends were used to determine the resilience of the HepG2 system to each chemical treatment.  

First, a subset of chemicals produced an overall decrease in ∂cV with increasing concentrations. 

This trend in ∂cV implied a recovering trajectory as invoked by, for example DMT, sodium L-

ascorbate, octanoic acid, chlorpyrifos-methyl, fludioxonil and tetramethrin. Second, a subset of 

chemicals elicited an overall increase in ∂cV with increasing treatment concentrations. This 

implied a non-recovering trajectory that contained tipping points in the cellular system identified 

by the condition, ∂cV=0. Based on our analysis, butachlor, oxadiazon, pioglitazone, farglitazar, 

troglitazone, and thiram had critical concentrations of 2.6 ± 0.5 µM, 17.6 ± 1.2 µM, 28.4 ± 5.0 

µM, 17.0 ± 2.4 µM, 4.5 ± 2.6 µM, and 69.1 ± 5.7 µM, respectively.   

The resilience analysis of the HepG2 system trajectories showed that roughly a third (334/967) 

of all chemicals produced recovery, another third (336/967) did not result in recovery and the 

remainder (297/967) did not produce trajectories with substantial perturbations, or sufficient 

confidence to place them in either category.  Captan, mercuric chloride and fluazinam are 

examples of chemicals that produced trajectories with low confidence. Visual inspection of 

trajectories for these chemicals showed complex concentration-dependent trends in ∂cV (see 

Figure 4). Overall, 104 chemicals produced complex trends in ∂cV and a majority (71/104) 

produced trajectories with low confidence. Complex trends in ∂cV could be indicative of noise 

and may require additional experimental data for improving confidence in the results.  
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We selected the 336 chemicals that elicited tipping points in the HepG2 system to compare 

critical concentrations with lowest effect concentrations (LEC) and the results are visualized in 

Figure 5.  Out of 336 chemicals that produced tipping points, only 124 had an LEC across any 

of the 10 endpoints at 72 h.  On average, the critical concentration (Ccr) was 13 times lower 

than the lowest LEC for 86% (106/124) of the chemicals, whereas the LEC was 6 times lower 

than the Ccr for 15% (18/124) of the chemicals. The Ccr was generally between 5 and 15 times 

(25th and 75th percentiles, respectively) lower than the lowest LEC. The results of the resilience 

analysis for 967 chemicals, along with critical points, are given in Supplemental Material, Excel 

Table S3. 

Discussion 

From these results we conclude that HCI can be used to identify in vitro cellular tipping points in 

response to chemical-induced perturbations. Application of HCI for screening has been used 

previously to study the effects of chemicals on cellular systems (O’Brien et al. 2006; Abraham et 

al. 2008), and to profile molecular changes underlying cellular processes (Neumann et al 2010; 

Held et al 2010). Here we analyzed time-course HCI data to investigate the dynamic response of 

the HepG2 cells to 10 concentrations of 967 chemicals. The time-dependent perturbations of 

HepG2 cells were analyzed as state trajectories that describe the sequential perturbations in the 

system state as it adapts to chemical exposure. A novel computational approach was developed 

to analyze trajectories by quantifying the dynamic response of the system across all chemical 

treatments.  The quantity of the scalar perturbation was termed the “velocity” because it 

measures the rate at which the aggregate system state deviates away from, or returns to, the 

normal state. We hypothesize that this velocity is a measure of system resilience, and it can be 
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used to identify a dose-dependent transition in system recovery.  We call this dose-dependent 

transition a 'tipping point' and believe it can be used as a point of departure in a high-throughput 

risk assessment context (Judson et al. 2011).  

Current toxicological tests are based on identifying apical adverse effects to define a point of 

departure for risk assessment. Adversity has been traditionally defined as a “biochemical, 

morphological or physiological change (in response to a stimulus) that either singly or in 

combination adversely affects the performance of the whole organism or reduces the organism’s 

ability to respond to an additional environmental challenge” (Lewis et al. 2002). Characterizing 

adverse effects using high-throughput assays is a key problem for 21st Century Toxicology 

(Keller et al. 2012).  HCI can measure adaptive cell stress responses, albeit in a cell-

autonomous context (Simmons et al. 2009). An adaptive response is a homeostatic process that is 

activated by the system to survive in a new environment without impairment of function (Keller 

et al. 2012). We believe that our analysis of trajectories and tipping points brings us a step closer 

to realizing the vision of 21st Century Toxicology by providing a framework to identify where 

“transition points occur between adaptive changes and adverse effects” (Keller et al. 2012). 

However, implementing this vision will require much more work on interpreting the role of cell-

autonomous adaptive responses in the context of pathways that lead to in vivo adverse outcomes 

(Boekelheide and Andersen 2010).  

Biological systems have evolved adaptive mechanisms that allow them to maintain a constant 

internal environment despite variation in external conditions (Kitano 2004). A number of 

homeostatic control systems compensate for chemical-induced perturbations in cells. Cells 

possess diverse signaling pathways to sense state changes due to reactive oxygen species (ROS), 
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DNA adducts, protein denaturation, glutathione depletion, etc. and can activate feedback control 

processes, usually via genetic regulatory networks, to maintain their internal state (Simmons et 

al. 2009).  As the concentration of a chemical rises and the intracellular state becomes 

increasingly perturbed, different feedback control mechanisms are incrementally activated and, 

potentially overwhelmed. The complexity of these interconnected processes could explain why 

we observed dose-dependent transitions in the recovery of HepG2 cells. Dose-dependent 

transitions have been described in the mechanisms of toxicity for a number of chemicals (Slikker 

et al. 2004), but such effects have not been studied systematically for in vitro systems. Zhang et 

al. (2008) have proposed a control-theoretic approach to model the action of anti-stress genetic 

regulatory networks in maintaining cell state, and to further explain the observation of dose-

dependent transitions in biological responses.  Experimental evidence (Slikker et al. 2004), 

together with mathematical models (Zhang et al. 2008), support the notion that there are dose-

dependent transitions in some biological responses; however, identifying in vivo thresholds for 

toxicity is expected to be multifactorial (time and concentration-dependent) and, thus, is 

extremely challenging.  

Assessing the global state of a cellular system, which is defined by thousands of biological 

molecules, is a challenging problem but a relatively small number of pathways may be involved 

in responding to chemical-induced stress. A set of such stress response pathways proposed by 

Simmons et al. (2009) includes: oxidative stress, heat shock response, DNA damage response, 

hypoxia, ER stress, metal stress, inflammation, and osmotic stress. Our study included a subset 

of these stress responses but we also considered mitochondrial, cytoskeletal, and cell cycle 

changes, which are relevant measures of cell health. There is also growing evidence for cross-
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talk between stress response pathways, which enhances the adaptive response of cells to 

environmental stressors (Simmons et al. 2009). Assuming a finite number of stress response 

pathways, the amplification of stress responses by cross-talk, and considering the sensitivity of 

HCI, we believe our study reasonably assessed adaptation of HepG2 cells to 967 chemicals.  In 

future work we plan to extend our analysis to include additional stress response pathways.  

It is important to note that our results may be limited by the small number of time points used in 

this study. As our analysis combined HCI data from two independent experiments (ToxCast 

Phase I (Judson et al. 2010) and Phase II), the 1 h time point was only collected for a subset of 

308/967 chemicals, primarily due to cost considerations, and preliminary results indicating that 

the 1 h time point was helpful for visualizing trajectories, but not essential to the analysis and 

conclusions. The analysis of tipping points is based on the complete set of observations for all 

967 chemicals at 24 and 72 h. We recognize that a more fine-grained temporal resolution or 

additional time points may produce different results. In particular, some chemicals that produced 

time-dependent results, but did not display recovery at 72 h, may exhibit recovery at later time 

points.  We hope to evaluate the impact of additional time points on the analysis of trajectories 

and tipping points in future work. 

Another potential limitation is the cell system used in this study.  The HepG2 cells are an 

immortalized line with characteristics that differ from normal hepatocytes. For example, these 

cells easily proliferate in culture but have limited metabolic activity compared to primary 

hepatocytes (O’Brien et al. 2006; Abraham et al. 2008). The HepG2 cell model used in this study 

was a two-dimensional monoculture that does not reflect the complex cell-to-cell interactions 

present in intact organs that have multiple cell types.  So, it is quite possible that the trajectories 
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produced by chemicals in this cell-autonomous model will be different from those in more 

complex cell-based systems.  However, we fully expect that the general categories of 

observations and the quantitative approach developed in the present study will be transferable to 

other cellular systems. 

Tipping-points for chemical-induced toxicity are not a new concept; however, defining them 

theoretically and identifying them experimentally is challenging. Chemical-induced toxicity is 

believed to occur when adaptive pathways in biological systems are overwhelmed, and usually 

when the stressor causes perturbations that are sufficiently large (Krewski et al. 2010).  The 

idea that biological systems have a homeostatic capacity implies the existence of tipping points. 

If biological tipping points could be quantified for a chemical, they could be used to estimate 

levels of chemical exposure that overwhelm this homeostatic capacity.  We believe that our 

approach for analyzing tipping points of cellular systems is an initial step toward quantifying in 

vitro regions of safety for chemicals. In combination with sophisticated methods for quantitative 

in vitro to in vivo extrapolation (Wetmore 2014), cellular tipping points could be used as a point 

of departure for high-throughput risk assessment.  This will require additional evaluation of our 

approach using more chemicals, cell-based models, time points and endpoints.  

Conclusions 

Our findings demonstrate the potential utility of time-course high-throughput, high-content 

biological assays for elucidating cellular phenotypic behaviors of chemicals and identifying 

tipping points of cellular systems. The number of chemicals used in this study, and range of 

cellular end points measured, suggest that this analysis approach can be utilized to provide 

valuable information about the effects of new chemicals and critical concentrations where the 
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cell responses fail to return to control levels. Our findings also underscore the importance of 

considering the temporal evolution of biological systems as a means of resolving adaptive 

changes that either lead to recovery or progress to cellular injury.  
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Figure Legends 

Figure 1. Hypothetical dynamic system perturbations as trajectories and calculation of tipping 

points. (a) The green curve depicts a hypothetical trajectory across observations at time t (Xt) 

shown on the basis of two endpoints (xi and xj). (b) The perturbation velocity (V) is calculated as 

the derivative of the scalar perturbation (|X|) with respect to time (shown in green). (c) Three 

different types of trajectories are shown using |X|: trajectories that describe the normal behavior 

of the system (shown in green); adaptive trajectories, which include some perturbation of the 

system state followed by recovery (shown in orange); and adverse trajectories that show initial 

adaptive responses followed by lack of recovery at later times (shown in red). (d) The 

relationship between the velocity, concentration and time is given by a continuous surface, V= 

f(c,t). (e) The rate of change of velocity with respect to concentration is given by: ∂cV = ∂V/∂c = 

∂2X/∂t∂c. (f) Solving ∂cV=0 gives the critical concentration, (Ccr). 

Figure 2. Concentration and time dependent perturbations produced by chemicals. From top to 

bottom each row of heatmaps shows the perturbations produced by increasing concentrations of: 

(a) octanoic acid, (b) dimethyl terephthalate, (c) chlorpyrifos-methyl, (d) butachlor, (e) dicofol, 

and (f) oxadiazon.  Each heatmap shows the endpoints (columns), time in hours (rows) and 

perturbations (colors) produced by each concentration (title). The endpoints include p53 activity, 

stress kinase (SK), oxidative stress (OS), microtubules (Mt), mitochondrial mass (MM), 

mitochondrial membrane, potential (MMP), mitotic arrest (MA), cell cycle arrest (CCA), nuclear 

size (NS) and cell number (CN). The colors signify no effect (yellow), increase (red), and 

decrease (blue), where magnitude of changes are shown in the color bar on the right. 

Figure 3. Magnitude of perturbations for trajectories produced by fixed treatment concentrations 

of different chemicals. Each graph shows scalar perturbations (y-axis) across time (x-axis) for 

multiple doses of a chemical. The colors signify treatment concentrations ranging from low 

(blue) to high (red).  

Figure 4. Trajectory analysis and critical concentrations of different chemicals at 72h. The y-

axis of each graph shows the scalar system perturbation (X = green), velocity (V = blue) and 
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derivative of velocity with respect to concentration ( Vc∂ = red), and uncertainty analysis of Vc∂  

(light red). The x-axis of each graph shows the treatment concentration of the chemical (µM). 

Dimethyl terephthalate, sodium L-ascorbate, octanoic acid, chlorpyrfos-methyl, fludioxonil and 

tetramethrin produced trends in Vc∂  consistent with system recovery. Butachlor, oxadiazon, 

pioglitazone, farglitazar, troglitazone, and thiram elicit trajectories with tipping points. Captan, 

mercuric chloride and fluazinam produced complex trends in Vc∂  that could be indicative of 

experimental noise.  

Figure 5. Critical concentrations (Ccr) for 340 chemicals at 72h. Chemicals are sorted by Ccr in 

descending order from top to bottom (y-axis) and each row shows the Ccr, lowest effect 

concentration (LEC), scalar perturbation (|X|), and velocity (V). (a) Ccr (µM) is shown as a point 

along the x-axis with the uncertainty as grey line, minimum LEC as a green point, and select 

chemicals are labeled. (b) LEC (µM) across p53, SK (stress kinase), OS (oxidative stress), Mt 

(microtubules), MM (mitochondrial mass), mitochondrial membrane potential (MMP), mitotic 

arrest (MA), cell cycle arrest (CCA), nuclear size (NS), and cell number (CN). The LEC value is 

represented by: no effect (pink), and red saturation as shown in the colorbar on the right. (c) |X| 

as a heatmap across concentrations (µM) where magnitude is represented by color saturation 

(values shown in colorbar on the right). (d) V as a heatmap across concentrations (µM) where 

V>0 (reds), V<0 (blues) and V=0 (white).  
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